\qquad
\qquad

Practice with Examples

For use with pages 210-217

GOAL Graph a linear equation using a table or a list of values and graph horizontal and vertical lines

Vocabulary

A solution of an equation in two variables x and y is an ordered pair (x, y) that makes the equation true.

The graph of an equation in x and y is the set of all points (x, y) that are solutions of the equation.

EXAMPLE 1 Verifying Solutions of an Equation

Use algebra to decide whether the point $(10,1)$ lies on the graph of $x-2 y=8$.

Solution

The point $(10,1)$ appears to be on the graph of $x-2 y=8$. You can check this algebraically.

$$
\begin{array}{rlrl}
x-2 y & =8 & & \text { Write original equation. } \\
10-2(1) \stackrel{?}{=} 8 & & \text { Substitute } 10 \text { for } x \text { and } 1 \text { for } y . \\
8 & =8 & & \text { Simplify. True statement }
\end{array}
$$

$(10,1)$ is a solution of the equation $x-2 y=8$, so it is on the graph.

Exercises for Example 1

Decide whether the given ordered pair is a solution of the equation.

1. $-3 x+6 y=12,(-4,0)$
2. $x+5 y=11,(2,1)$
3. $y=1,(3,1)$
4. $3 y-5 x=4,(-2,2)$
\qquad Date \qquad

Practice with Examples

For use with pages 210-217

EXAMPLE 2
 Graphing a Linear Equation

Use a table of values to graph the equation $x-2 y=4$.

Solution

Rewrite the equation in function form by solving for y.

$$
\begin{aligned}
x-2 y & =4 & & \text { Write original equation. } \\
-2 y & =-x+4 & & \text { Subtract } x \text { from each side. } \\
y & =\frac{x}{2}-2 & & \text { Divide each side by }-2 .
\end{aligned}
$$

Choose a variety of values of x and make a table of values.

Choose \boldsymbol{x}.	-4	-2	0	2	4
Evaluate \boldsymbol{y}.	-4	-3	-2	-1	0

Using the table of values, you can write five ordered pairs.

$$
(-4,-4),(-2,-3),(0,-2),(2,-1),(4,0)
$$

Plot each ordered pair. The line through the points is the graph
 of the equation.

Exercises for Example 2

Use a table of values to graph the equation.
5. $y=3 x-4$
6. $3 y-3 x=6$
7. $y=-3(x-1)$

\qquad
Practice with Examples
For use with pages 210-217

EXAMPLE 3 Graphing $y=b$

Graph the equation $y=-3$.

Solution

The y-value is always -3 , regardless of the value of x. The points $(-1,-3),(0,-3),(2,-3)$ are some solutions of the equation. The graph of the equation is a horizontal line 3 units below the x-axis.

			1	1	y		

EXAMPLE 4 Graphing $x=a$

Graph the equation $x=5$.

Solution

The x-value is always 5 , regardless of the value of y. The points $(5,-2),(5,0),(5,3)$ are some solutions of the equation. The graph of the equation is a vertical line 5 units to the right of the y-axis.

Exercises for Examples 3 and 4
Graph the equation.
8. $y=0$

11. $y=6$

9. $x=-4$

12. $y=-5$

10. $x=0$

13. $x=2$

