

Name

# **Practice with Examples**

For use with pages 154–159



Collect variables on one side of an equation and use equations to solve real-life problems

Date

### Vocabulary

An **identity** is a linear equation that is true for all values of the variable.

# **EXAMPLE 1** Collecting Variables on One Side

Solve 20 - 3x = 2x.

### SOLUTION

Think of 20 - 3x as 20 + (-3x). Since 2x is greater than -3x, collect the x-terms on the right side.

| 20 - 3x = 2x                  | Write original equation. |
|-------------------------------|--------------------------|
| 20 - 3x + 3x = 2x + 3x        | Add $3x$ to each side.   |
| 20 = 5x                       | Simplify.                |
| $\frac{20}{5} = \frac{5x}{5}$ | Divide each side by 5.   |
| 4 = x                         | Simplify.                |

Exercises for Example 1

#### Solve the equation.

**1.** 5q = -7q + 6

**2.** 14d - 6 = 17d

$$-y + 7 = -8y$$

3.

.....

# **Practice with Examples**

For use with pages 154–159

# **EXAMPLE 2** Many Solutions or No Solution

**a.** Solve 
$$2x + 3 = 2x + 4$$
.

**b.** Solve -(t + 5) = -t - 5

#### SOLUTION

| <b>a.</b> $2x + 3 = 2x + 4$ | Write original equation.      |
|-----------------------------|-------------------------------|
| 2x + 3 - 3 = 2x + 4 - 3     | Subtract 3 from each side.    |
| 2x = 2x + 1                 | Simplify.                     |
| 0 = 1                       | Subtract $2x$ from each side. |

The original equation has no solution, because  $0 \neq 1$  for any value of *x*.

| <b>b.</b> $-(t+5) = -t-5$ | Write original equation.   |
|---------------------------|----------------------------|
| -t-5=-t-5                 | Use distributive property. |
| -5 = -5                   | Add <i>t</i> to each side. |

All values of *t* are solutions, because -5 = -5 is always true. The original equation is an *identity*.

# Exercises for Example 2

#### Solve the equation.

**4.** 9z - 3 = 9z

**5.** 2(f-7) = 2f - 14

**6.** 
$$n + 3 = -5n$$



Name

# Practice with Examples

For use with pages 154–159

# **EXAMPLE 3** Solving Real-Life Problems

A health club charges nonmembers \$2 per day to swim and \$5 per day for aerobics classes. Members pay a yearly fee of \$200 plus \$3 per day for aerobics classes. Write and solve an equation to find the number of days you must use the club to justify a yearly membership.

### SOLUTION

Let *n* represent the number of days that you use the club. Then find the number of times for which the two plans would cost the same.

| 2n+5n=200+3n                   | Write real-life equation.           |
|--------------------------------|-------------------------------------|
| 7n = 200 + 3n                  | Combine like terms.                 |
| 7n - 3n = 200 + 3n - 3n        | Subtract 3 <i>n</i> from each side. |
| 4n = 200                       | Simplify.                           |
| $\frac{4n}{4} = \frac{200}{4}$ | Divide each side by 4.              |
| n = 50                         | Simplify.                           |

You must use the club 50 days to justify a yearly membership.

### Exercises for Example 3

7. Rework Example 3 if nonmembers pay \$3 per day to swim.

**8.** Rework Example 3 if members pay a yearly fee of \$220.

Date

57