\qquad
\qquad

Practice with Examples

For use with pages 154-159

GOAL Collect variables on one side of an equation and use equations to solve real-life problems

Vocabulary
An identity is a linear equation that is true for all values of the variable.

example 1 Collecting Variables on One Side

Solve $20-3 x=2 x$.

Solution

Think of $20-3 x$ as $20+(-3 x)$. Since $2 x$ is greater than $-3 x$, collect the x-terms on the right side.

$$
\begin{aligned}
20-3 x & =2 x & & \text { Write original equation. } \\
20-3 x+3 x & =2 x+3 x & & \text { Add } 3 x \text { to each side. } \\
20 & =5 x & & \text { Simplify. } \\
\frac{20}{5} & =\frac{5 x}{5} & & \text { Divide each side by } 5 . \\
4 & =x & & \text { Simplify. }
\end{aligned}
$$

Exercises for Example 1

Solve the equation.

1. $5 q=-7 q+6$
2. $14 d-6=17 d$
3. $-y+7=-8 y$
\qquad

Practice with Examples

For use with pages 154-159

EXAMPLE 2 Many Solutions or No Solution

a. Solve $2 x+3=2 x+4$.
b. Solve $-(t+5)=-t-5$

Solution

a. $\quad 2 x+3=2 x+4 \quad$ Write original equation.
$2 x+3-3=2 x+4-3 \quad$ Subtract 3 from each side.
$2 x=2 x+1 \quad$ Simplify.
$0=1 \quad$ Subtract $2 x$ from each side.
The original equation has no solution, because $0 \neq 1$ for any value of x.
b. $-(t+5)=-t-5 \quad$ Write original equation.

$$
\begin{aligned}
-t-5 & =-t-5 & & \text { Use distributive property. } \\
-5 & =-5 & & \text { Add } t \text { to each side. }
\end{aligned}
$$

All values of t are solutions, because $-5=-5$ is always true.
The original equation is an identity.

Exercises for Example 2

Solve the equation.
4. $9 z-3=9 z$
5. $2(f-7)=2 f-14$
6. $n+3=-5 n$

Name \qquad Date \qquad

Practice with Examples

For use with pages 154-159

EXAMPLE 3 Solving Real-Life Problems

A health club charges nonmembers $\$ 2$ per day to swim and $\$ 5$ per day for aerobics classes. Members pay a yearly fee of $\$ 200$ plus $\$ 3$ per day for aerobics classes. Write and solve an equation to find the number of days you must use the club to justify a yearly membership.

Solution

Let n represent the number of days that you use the club. Then find the number of times for which the two plans would cost the same.

$$
\begin{aligned}
2 n+5 n & =200+3 n & & \text { Write real-life equation. } \\
7 n & =200+3 n & & \text { Combine like terms. } \\
7 n-3 n & =200+3 n-3 n & & \text { Subtract } 3 n \text { from each side. } \\
4 n & =200 & & \text { Simplify. } \\
\frac{4 n}{4} & =\frac{200}{4} & & \text { Divide each side by } 4 . \\
n & =50 & & \text { Simplify. }
\end{aligned}
$$

You must use the club 50 days to justify a yearly membership.

Exercises for Example 3

7. Rework Example 3 if nonmembers pay $\$ 3$ per day to swim.
8. Rework Example 3 if members pay a yearly fee of $\$ 220$.
