LESSON **3.1**

Practice with Examples

For use with pages 132–137

NAME

Solve linear equations using addition and subtraction and use linear equations to solve real-life problems

VOCABULARY

Equivalent equations have the same solutions.

Inverse operations are two operations that undo each other, such as addition and subtraction.

Each time you apply a transformation to an equation, you are writing a **solution step.**

In a **linear equation**, the variable is raised to the *first* power and does not occur inside a square root symbol, an absolute value symbol, or in a denominator.

EXAMPLE 1 Adding to Each Side

Solve y - 7 = -2.

SOLUTION

To isolate *y*, you need to undo the subtraction by applying the inverse operation of adding 7.

y - 7 = -2	Write original equation.
y - 7 + 7 = -2 + 7	Add 7 to each side.
y = 5	Simplify.

The solution is 5. Check by substituting 5 for *y* in the original equation.

Exercises for Example 1

Solve the equation.

1. t - 11 = 4

2. x - 2 = -3

Name

Practice with Examples

For use with pages 132–137

EXAMPLE 2 Subtracting from Each Side

Solve q + 4 = -9.

SOLUTION

To isolate q, you need to undo the addition by applying the inverse operation of subtracting 4.

q + 4 = -9	Write original equation.
q + 4 - 4 = -9 - 4	Subtract 4 from each side.
q = -13	Simplify.

The solution is -13. Check by substituting -13 for q in the original equation.

Exercises for Example 2

Solve the equation.

4. $s + 1 = -8$	5. $-6 + b = 10$	6. $6 = w + 12$
	•••••••••••••••••••••••••••••••••••••••	•••••

.....

EXAMPLE 3 Simplifying First

Solve x - (-3) = 10.

SOLUTION

x - (-3) = 10	Write original equation.
x + 3 = 10	Simplify.
x + 3 - 3 = 10 - 3	Subtract 3 from each side.
x = 7	Simplify.

The solution is 7. Check by substituting 7 for x in the original equation.

Exercises for Example 3 Solve the equation. 7. 8 + z = 18. 7 = k - 29. 9 = a + (-5)

47

Name

Practice with Examples

For use with pages 132–137

Modeling a Real-Life Problem **EXAMPLE 4**

The original price of a bicycle was marked down \$20 to a sale price of \$85. What was the original price?

SOLUTION

Original price (p) – Price reduction (20) = Sale Price(85)

Solve the equation p - 20 = 85.

p - 20 = 85Write real-life equation. p - 20 + 20 = 85 + 20 Add 20 to each side. p = 105Simplify.

The original price was \$105. Check this in the statement of the problem.

Exercise for Example 4

..... **10.** After a sale, the price of a stereo was marked up \$35 to a regular price of \$310. What was the sale price?

48