\qquad
\qquad

Practice with Examples

For use with pages 132-137

GOAL Solve linear equations using addition and subtraction and use linear

 equations to solve real-life problems
Vocabulary

Equivalent equations have the same solutions.
Inverse operations are two operations that undo each other, such as addition and subtraction.

Each time you apply a transformation to an equation, you are writing a solution step.

In a linear equation, the variable is raised to the first power and does not occur inside a square root symbol, an absolute value symbol, or in a denominator.

example 1 Adding to Each Side

Solve $y-7=-2$.

Solution

To isolate y, you need to undo the subtraction by applying the inverse operation of adding 7 .

$$
\begin{aligned}
y-7 & =-2 & & \text { Write original equation. } \\
y-7+7 & =-2+7 & & \text { Add } 7 \text { to each side. } \\
y & =5 & & \text { Simplify. }
\end{aligned}
$$

The solution is 5 . Check by substituting 5 for y in the original equation.
Exercises for Example 1
Solve the equation.

1. $t-11=4$
2. $x-2=-3$
3. $5=d-8$
\qquad
\qquad

Practice with Examples

For use with pages 132-137

EXAMPLE 2 Subtracting from Each Side

Solve $q+4=-9$.

Solution

To isolate q, you need to undo the addition by applying the inverse operation of subtracting 4 .

$$
\begin{aligned}
q+4 & =-9 & & \text { Write original equation. } \\
q+4-4 & =-9-4 & & \text { Subtract } 4 \text { from each side. } \\
q & =-13 & & \text { Simplify. }
\end{aligned}
$$

The solution is -13 . Check by substituting -13 for q in the original equation.

Exercises for Example 2

Solve the equation.
4. $s+1=-8$
5. $-6+b=10$
6. $6=w+12$

example 3 Simplifying First

Solve $x-(-3)=10$.

Solution

$$
\begin{aligned}
x-(-3) & =10 & & \text { Write original equation. } \\
x+3 & =10 & & \text { Simplify. } \\
x+3-3 & =10-3 & & \text { Subtract } 3 \text { from each side. } \\
x & =7 & & \text { Simplify. }
\end{aligned}
$$

The solution is 7 . Check by substituting 7 for x in the original equation.

Exercises for Example 3

Solve the equation.
7. $8+z=1$
8. $7=k-2$
9. $9=a+(-5)$
\qquad

Practice with Examples

For use with pages 132-137

example 4 Modeling a Real-Life Problem

The original price of a bicycle was marked down $\$ 20$ to a sale price of $\$ 85$. What was the original price?

SOLUTION

Original price (p) - Price reduction (20) $=$ Sale Price (85)
Solve the equation $p-20=85$.

$$
\begin{aligned}
p-20 & =85 & & \text { Write real-life equation. } \\
p-20+20 & =85+20 & & \text { Add } 20 \text { to each side. } \\
p & =105 & & \text { Simplify } .
\end{aligned}
$$

The original price was $\$ 105$. Check this in the statement of the problem.

Exercise for Example 4

10. After a sale, the price of a stereo was marked up $\$ 35$ to a regular price of $\$ 310$. What was the sale price?
